
Page of 1 86 Paladin Blockchain Security

Smart Contract
Security Assessment

For Vesq
10 December 2021

paladinsec.co info@paladinsec.co

Final Report

Table of Contents 
 
Table of Contents	
2

Disclaimer	
5

1 Overview	
6

1.1 Summary	
6

1.2 Contracts Assessed	
7

1.3 Findings Summary	
8

1.3.1 Global Issues	
9

1.3.2 VSQERC20	
9

1.3.3 sVSQERC20	
10

1.3.4 wsVSQ	
10

1.3.5 BondDepository	
10

1.3.6 EthBondDepository	
11

1.3.7 Staking	
11

1.3.8 StakingDistributor	
11

1.3.9 StakingHelper	
12

1.3.10 StakingWarmup	
12

1.3.11 StandardBondingCalculator	
12

1.3.12 Treasury	
13

1.3.13 VSQZapIn	
13

1.3.14 Code style-related Issues	
14

2 Findings	
15

2.1 Global Issues	
15

2.1.1 Issues & Recommendations	
16

2.2 VSQERC20	
27

2.2.1 Token Overview	
27

2.2.2 Privileged Roles	
27

2.2.3 Issues & Recommendations	
28

Page of 2 86 Paladin Blockchain Security

2.3 sVSQERC20	
30

2.3.1 Token Overview	
30

2.3.2 Privileged Roles	
31

2.3.3 Issues & Recommendations	
32

2.4 wsVSQ	
35

2.4.1 Token Overview	
35

2.4.2 Issues & Recommendations	
36

2.5 BondDepository	
37

2.5.1 Privileged Roles	
37

2.5.2 Issues & Recommendations	
38

2.6 EthBondDepository	
47

2.6.1 Privileged Roles	
47

2.6.2 Issues & Recommendations	
48

2.7 Staking	
51

2.7.1 Privileged Roles	
52

2.7.2 Issues & Recommendations	
53

2.8 StakingDistributor	
55

2.8.1 Privileged Roles	
55

2.8.2 Issues & Recommendations	
56

2.9 StakingHelper	
59

2.9.1 Issues & Recommendations	
60

2.10 StakingWarmup	
61

2.10.1 Privileged Roles	
61

2.10.2 Issues & Recommendations	
61

2.11 StandardBondingCalculator	
62

2.11.1 Issues & Recommendations	
63

2.12 Treasury	
66

2.12.1 Privileged Roles	
67

2.12.2 Issues & Recommendations	
68

2.13 VSQZapIn	
74

Page of 3 86 Paladin Blockchain Security

2.13.1 Privileged Roles	
74

2.13.2 Issues & Recommendations	
75

2.14 Code style-related Issues	
76

2.14.1 Issues & Recommendations	 77

Page of 4 86 Paladin Blockchain Security

Disclaimer

Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team. 

Page of 5 86 Paladin Blockchain Security

1	 	 Overview

This report has been prepared for Vesq on the Polygon network. Paladin provides a
user-centred examination of the smart contracts to look for vulnerabilities, logic
errors or other issues from both an internal and external perspective.

1.1	 	 Summary

Project Name Vesq

URL https://vesq.io

Platform Polygon

Language Solidity

Page of 6 86 Paladin Blockchain Security

https://vesq.io

1.2	 	 Contracts Assessed

Name Contract
Live Code
Match

VSQERC20 0x29F1e986FCa02B7E54138c04C4F503DdDD250558

sVSQERC20 0xbb0FDc2Fe6D3cEB6Bf76Cc955173a07EDbF57494

wsVSQ 0x05B33f816d2C0C2D20F0777a75ad549df05bF24D

BondDepository

Frax-VSQ 
0x8Ab125D6D6ea1743e53Ca79595046f2a0c76A551

Mai-VSQ 
0x2d7c40Cd0228264AE5a73F01bC54FA13C4476Da1

Dai-VSQ 
0xF4acBe9de1Fae931C5A67115184069474d4fAdad

Frax Bond 
0x5AeC30AFe641EBe8789D8B21223F6D2C74f6fE2C

Mai Bond 
0x9fD78920cdbE6f365A557cec282cc88152e35670

Dai Bond 
0x6Fd68930eC828ec5906B0FDEC686F3f459C08d1A

EthBondDepository EthBondDepository.sol

Staking 0x2F3E9e54bD4513D1B49A6d915F9a83310638CFC2

StakingDistributor 0xabE372DCFB8800B3cDE30f1d6666401C765f2F3B

StakingHelper 0x493Fdb9ddFd51873a878494B0E4d858D6DEc57E9

StakingWarmup 0xE33e7247BdF5FDeB6705E820F3f26823Ea294F13

StandardBondingCalc
ulator

0xFEeADb0798EF580b1394eb38659Cf85cC25D43e4

Treasury 0x8c7290399cECbBBf31E471951Cc4C2ce91F5073c

VSQZapIn
VSQZapIn.sol 
(Deployed contracts were not provided)

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

MATCH

Page of 7 86 Paladin Blockchain Security

1.3	 	 Findings Summary

Classification of Issues

 

Severity Found Resolved
Partially
Resolved

Acknowledged
(no change made)

3 3 - -

2 2 - -

19 16 1 2

32 25 2 5

Total 56 46 3 7

 Medium

 Informational

 High

 Low

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues with that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 High

 Low

 Medium

 Informational

Page of 8 86 Paladin Blockchain Security

1.3.1	 Global Issues

1.3.2	 VSQERC20

ID Severity Summary Status

01 Gov Privilege: Governance can change crucial aspects of the
protocol to potentially drain the contracts of all supplied tokens

02 The last owner can be reclaimed across multiple contracts

03 New owner variable is private

04 Usage of transferFrom/transfer instead of safeTransferFrom/
safeTransfer

05 permit can be frontrun and cause denial of service

06 The contracts become unusable in the year 2106

07 The contracts do not work with reflective tokens

RESOLVED

RESOLVED

LOW

INFO

LOW

HIGH

MEDIUM

RESOLVED

RESOLVED

RESOLVED

INFO

INFO

RESOLVED

RESOLVED

ID Severity Summary Status

08 _burnFrom is marked as public

09 Transactionless approval permit mechanism still references zero
swap

10 Vault can be set to the zero address RESOLVED

RESOLVEDLOW

INFO
RESOLVED

INFO

Page of 9 86 Paladin Blockchain Security

1.3.3	 sVSQERC20

1.3.4	 wsVSQ

1.3.5	 BondDepository

ID Severity Summary Status

11 Infrequent rebases incentivize malicious parties to strategically
(re)order transactions for arbitrage and steal all rebased tokens off

the LP pairs

12 DOMAIN_SEPARATOR can be made immutable

13 Under a constant and small circulating supply, the non-circulating
supply starts increasing more rapidly with every rebase

RESOLVED

RESOLVED

LOW

INFO

INFO ACKNOWLEDGED

ID Severity Summary Status

14 Gas optimization: Usage of decimals as a precision multiplier RESOLVEDINFO

ID Severity Summary Status

15 Vested amount is relocked on deposit, even if the deposit is made by
third-parties allowing for targeted Denial of Service

16 Adjustment target is never reached

17 Deposit is vulnerable to reentrancy if the principle has a reentrancy
vector

18 The maximum debt can be exceeded by at most maxPayout

19 bondPriceInUSD is denominated in the decimals of the other token
in the LP and might not be correct for non stablecoin LPs

20 initializeBondTerms has no validation

21 Contract does not work with a zero vestingTerm

22 Contract could theoretically run out of VSQ

LOW

RESOLVED

INFO

RESOLVED

RESOLVED

HIGH

RESOLVED

INFO

INFO

RESOLVED

RESOLVED

RESOLVED

LOW

RESOLVED

LOW

INFO

Page of 10 86 Paladin Blockchain Security

1.3.6	 EthBondDepository

1.3.7	 Staking

1.3.8	 StakingDistributor

ID Severity Summary Status

23 priceFeed is internal

24 Phishing: Frontend could trick users into sending to much MATIC for
deposits

25 bondPrice calculation is inconsistent with BondDepository

26 The protocol will likely malfunction if ChainLink feeds for MATIC will
be different than 8 decimals

ACKNOWLEDGED

INFO

INFO

LOW

INFO

RESOLVED

RESOLVED

RESOLVED

ID Severity Summary Status

27 Staked amount is relocked on subsequent stakes, even if the stake is
made by third-parties allowing for targeted Denial of Service

28 Lock logic might be wrongly defined

29 Rebases can be arbitraged/frontran

LOW

HIGH
RESOLVED

RESOLVED

INFO RESOLVED

ID Severity Summary Status

30 Adjustment target is never reached

31 Unbounded gas usage due to extensive for-loop usage

32 Lack of validation

33 Adjustments are not reset when recipient is removed

RESOLVED

LOW

LOW

INFO

LOW

RESOLVED

RESOLVED

RESOLVED

Page of 11 86 Paladin Blockchain Security

1.3.9	 StakingHelper

1.3.10	 StakingWarmup

No issues found.

1.3.11	 StandardBondingCalculator

ID Severity Summary Status

34 Phishing: stake function allows to stake towards a different address ACKNOWLEDGEDLOW

ID Severity Summary Status

35 Does not support LP pairs where the second currency has less than
9 decimals

36 StandardBondingCalculator can only value pairs in which the two
tokens have equal “value”

37 Markdown will misbehave if an LP with two non-VSQ tokens is
provided

38 markdown function is vulnerable to price manipulation

RESOLVED

RESOLVEDMEDIUM

LOW

ACKNOWLEDGEDINFO

LOW

RESOLVED

Page of 12 86 Paladin Blockchain Security

1.3.12	 Treasury

1.3.13	 VSQZapIn

ID Severity Summary Status

39 Lack of component safeguards in a system that plans to increase in
number of components over time is considered brittle

40 Adding a token as both a liquidity and reserve token would cause it
to be double counted in the treasury value

41 repayDebtWithVSQ has inconsistent privilege requirements which
allows for slight privilege escalation

42 Unnecessary comparison to true on withdraw function

43 Reserve value mechanism could cause withdrawals and other
operations to temporarily fail

44 Lack of safeTransfer usage within incurDebt

45 Manage will always do an excessReserve check even if the token is
not within the liquidity or reserves tokens

RESOLVED

INFO

LOW

RESOLVED

ACKNOWLEDGED

INFO

INFO

LOW

INFO

RESOLVED

LOW

RESOLVED

RESOLVED

RESOLVED

ID Severity Summary Status

46 Phishing risk: Users could be mislead into undesirable swaps

47 swapData can be denoted as calldata throughout the contract

PARTIAL

RESOLVEDINFO

LOW

Page of 13 86 Paladin Blockchain Security

1.3.14	 Code style-related Issues

ID Severity Summary Status

48 Inconsistency: Unused mint function emits an event from
address(this) while the mint logic during initialization emits an event

from the zero address

49 Various functions can be made external

50 Lack of events for various functions

51 Typographical errors

52 Unused variables/dependencies throughout the contracts

53 Gas optimization: Contract uses hardcoded strings in SafeMath
functions

54 Uncast addresses make the code more verbose than it needs to be

55 Ambiguous errors

56 Gas optimization: storage variables are frequently unnecessarily
reread

INFO

RESOLVED

INFO

INFO

INFO

ACKNOWLEDGED

RESOLVED

PARTIAL

RESOLVED

RESOLVEDINFO

INFO

ACKNOWLEDGED

PARTIAL

RESOLVED

INFO

INFO

INFO

Page of 14 86 Paladin Blockchain Security

2	 	 Findings

2.1	 	Global Issues

The issues in this section are applicable to the entire protocol.

Page of 15 86 Global Issues Paladin Blockchain Security

2.1.1		 Issues & Recommendations

Issue #01 Gov Privilege: Governance can change crucial aspects of the
protocol to potentially drain the contracts of all supplied tokens

Severity

Description VESQ is a protocol that is responsible for the issuance and
management of an algorithmic, free-floating stable asset, VSQ,
which is backed by a treasury. As the system has many components
which need to be governed, like how the treasury is potentially
used, which assets could be used as bonds and the very important
parameters of the bond issuance protocol, there is by nature an
extreme amount of governance privilege. Essentially, if governance
cannot be controlled, both all VSQ and all funds in the treasury can
be considered compromised. It is therefore of utmost importance
that the team addresses this concern seriously.

Some of the most important governance privileges are that the
treasury manager can add new contracts that can mint any amount
of VSQ (up to the maximum allowed by the reserve value), the
manager can furthermore add contracts that can potentially
withdraw all funds stored in the treasury. Finally, within the VSQ
token, “vault” ownership could be moved by the VSQ token owner
to a new address which can then again mint as many VSQ tokens as
they want, in this case without limit. Other potential risk vectors
include depositing bad tokens into the treasury which allow
privileged contracts to take out valuable assets in return and sVSQ
tokens in the Staking contract can be taken out by governance
through the lock bonus mechanism.

Due to the anonymous nature of decentralized finance, users have
become quite wary of protocols with large privileges and it will likely
boost investor confidence to address this seriously.

HIGH SEVERITY

Page of 16 86 Global Issues Paladin Blockchain Security

Recommendation Consider designing a strong governance structure where it is
unlikely and ideally impossible for the governance to abuse these
privileges.

A decent short-term solution is doxx-ing or KYC’ing the team to
parties trusted by the community as one will be less inclined to
steal funds when their identities are known.

Paladin also strongly recommends transferring the ownership of the
contracts to a VESQ Multisig. Furthermore, if VESQ Multisig is
comprised of many well known community parties, Paladin can also
mark this issue as resolved by going through an pseudonymous
identity verification round with all multisig participants that includes
validating that the community member in fact owns their respective
multisig key.

Resolution

Although this risk is still present, the client has undergone an
internal KYC session with Paladin. Generally speaking, even though
it does not eliminate the risk, it does reduce it.

Paladin has confirmed that the two parties that underwent KYC own
the Gnosis MultiSig at
0x4F64c22FB06ab877Bf63f7064fA21C5c51cc85bf. This MultiSig
has also been confirmed to be a valid Gnosis deployment. 2 out of 2
signatures are required for any actions from this address.

 
Signature 1

Nickname: Syed 
Address: 0xe06a1e612c4D5D07784D6e2e528A23Fe2bA75D97 
KYC: Yes 
Address ownership verification: Yes 

Signature 2

Nickname: Zackary 
Address: 0x1fA58d1361f0344E367761dDE020Df9417aA3565

KYC: Yes

Address ownership verification: Yes

RESOLVED

Page of 17 86 Global Issues Paladin Blockchain Security

Note that as the issue is still present, if the clients are hacked, a
third party might abuse it.

As the contracts are not yet deployed at the writing of this issue,
users will have to validate that the ownership positions of all
contracts point to this address. Larger investors who like to be
careful furthermore need to be diligent in going over all privileged
addresses in the treasury.

Page of 18 86 Global Issues Paladin Blockchain Security

Issue #02 The last owner can be reclaimed across multiple contracts

Severity

Location sVSQERC20

Lines 988-991

function renounceManagement() public virtual override

onlyManager {

emit OwnershipPushed(_owner, address(0));

 _owner = address(0);

}

Lines 999-1003 

function pullManagement() public virtual override {

 require(msg.sender == _newOwner, "Ownable: must be new

owner to pull");

 emit OwnershipPulled(_owner, _newOwner);

 _owner = _newOwner;

}

BondDepository

Lines 36-39

function renounceManagement() public virtual override

onlyManager {

emit OwnershipPushed(_owner, address(0));

 _owner = address(0);

}

Line 47-51

function pullManagement() public virtual override {

 require(msg.sender == _newOwner, "Ownable: must be new

owner to pull");

 emit OwnershipPulled(_owner, _newOwner);

 _owner = _newOwner;

}

MEDIUM SEVERITY

Page of 19 86 Global Issues Paladin Blockchain Security

Staking

Lines 534-537

function renounceManagement() public virtual override

onlyManager {

 emit OwnershipPushed(_owner, address(0));

 _owner = address(0);

}

Lines 545-549

function pullManagement() public virtual override {

 require(msg.sender == _newOwner, "Ownable: must be new

owner to pull");

 emit OwnershipPulled(_owner, _newOwner);

 _owner = _newOwner;

}

StakingDistributor

Lines 344-347

function renouncePolicy() public virtual override

onlyPolicy() {

 emit OwnershipTransferred(_policy, address(0));

 _policy = address(0);

}

Lines 354-358

function pullPolicy() public virtual override {

 require(msg.sender == _newPolicy);

 emit OwnershipTransferred(_policy, _newPolicy);

 _policy = _newPolicy;

}

Page of 20 86 Global Issues Paladin Blockchain Security

Treasury

Lines 163-166

function renounceManagement() public virtual override

onlyManager {

 emit OwnershipPushed(_owner, address(0));

 _owner = address(0);

}

Lines 168-172

function pullManagement() public virtual override {

 require(msg.sender == _newOwner, "Ownable: must be new

owner to pull");

 emit OwnershipPulled(_owner, _newOwner);

 _owner = _newOwner;

}

Description Within the ownership implementation of the different contracts,
ownership can be renounced, however, the last owner can reclaim
this at any moment as the new owner variable was never reset.

It should furthermore be noted that before the first ownership
transfer is made, the zero address can claim ownership over the
contract. This is hardly problematic as the zero contract is not
known to be owned by anyone and probabilistically speaking, under
the current address scheme, the chances of anyone ever owning it
are negligible.

Note: On StakingDistributor, the Ownernership implementation is
implemented as Policy.

Recommendation Consider using BoringOwnable instead.

Resolution

BoringOwnable is now used throughout the codebase.

https://github.com/boringcrypto/BoringSolidity/blob/
f05de5f250056730c3fd3e5a5d1e572c2d113023/contracts/
BoringOwnable.sol

RESOLVED

Page of 21 86 Global Issues Paladin Blockchain Security

https://github.com/boringcrypto/BoringSolidity/blob/f05de5f250056730c3fd3e5a5d1e572c2d113023/contracts/BoringOwnable.sol
https://github.com/boringcrypto/BoringSolidity/blob/f05de5f250056730c3fd3e5a5d1e572c2d113023/contracts/BoringOwnable.sol
https://github.com/boringcrypto/BoringSolidity/blob/f05de5f250056730c3fd3e5a5d1e572c2d113023/contracts/BoringOwnable.sol
https://github.com/boringcrypto/BoringSolidity/blob/f05de5f250056730c3fd3e5a5d1e572c2d113023/contracts/BoringOwnable.sol

Issue #03 New owner variable is private

Severity

Location sVSQERC20: _newOwner variable 

BondDepository: _newOwner variable 

Staking: _newOwner variable 

StakingDistributor: _newPolicy variable 

Treasury: _newOwner variable

Description Throughout the contracts that implement the Ownership pattern,
the variable that denotes the new owner is private. Important
variables that third-parties might want to inspect should be marked
as public so that these third-parties can easily inspect them through
the explorer, web3 and derivative contracts.

Recommendation Consider marking the above variables as public.

Resolution

LOW SEVERITY

BoringOwnable is now used throughout the codebase, making this
issue obsolete.

RESOLVED

Page of 22 86 Global Issues Paladin Blockchain Security

Issue #04 Usage of transferFrom/transfer instead of safeTransferFrom/
safeTransfer

Severity

Description Throughout the contracts, the transfer tokens functionality does not
work with tokens that return false.

BondDepository

VSQ tokens which return false are not supported; tokens which do
not return a boolean are not supported. Consider using
safeTransferFrom. It should be noted that safeTransferFrom is
consistently used throughout the rest of the protocol except in this
contract and a few others making this an inconsistency issue as well.

EthBondDepository

weth tokens which return false are not supported; tokens which do
not return a boolean are not supported. Consider using
safeTransferFrom. It should be noted that safeTransferFrom is
consistently used throughout the rest of the protocol except in this
contract and a few others making this an inconsistency issue as well.

StakingHelper

VSQ tokens which return false are not supported; tokens which do
not return a boolean are not supported. Consider using
safeTransferFrom. It should be noted that safeTransferFrom is
consistently used throughout the rest of the protocol except in this
contract and a few others making this an inconsistency issue as well.

StakingWarmup

sVSQERC20 tokens which return false are not supported, tokens
which do not return a boolean are not supported. Consider using
safeTransfer. It should be noted that safeTransfer is consistently
used throughout the rest of the protocol except in this contract and
a few others making this an inconsistency issue as well.

Recommendation Consider using safeTransferFrom or safeTransfer.

Resolution

LOW SEVERITY

RESOLVED

Page of 23 86 Global Issues Paladin Blockchain Security

Issue #05 permit can be frontrun and cause denial of service

Severity

Description Many of the tokens contain a transactionless approval scheme
based on EIP-2612. This mechanism is most well-known by users
when they break up Uniswap LP tokens without having to explicitly
send an approval transaction, instead they just have to make a
signature.

Just like with Uniswap permits, if permit is executed twice, the
second execution will be reverted. It is thus in theory possible for a
bot to pick up permit transactions in the mempool and execute
them before a contract can. The issue with this is that the rest of
said contract functionality would be lost as well. This could allow
for denial of service.

Recommendation Within derivative protocols, one can consider using try-catch for
permit and validating the approval afterwards.

Resolution

INFORMATIONAL

The client has indicated that they will use try-catch logic whenever
attempting such interactions. We remind the client to be careful of
gas-griefing where the try section fails because gas runs out but the
rest of the code can still complete on the remainder of gas

RESOLVED

Page of 24 86 Global Issues Paladin Blockchain Security

https://eips.ethereum.org/EIPS/eip-2612

Issue #06 The contracts become unusable in the year 2106

Severity

Location Staking::Line 710 (example) 

epoch.endTime = epoch.endTime.add32(epoch.length);

Description Throughout the contract, timestamps are supposed to fit in 32 bit
integers. However, once the year 2106 is reached, this is no longer
possible and most functionality will fail and revert.

For example, once the timestamp of the next epoch does not fit into
an unsigned 32 bit integer, the rebase function will revert.
Furthermore, as soon as this timestamp is reached, even if the
epoch hasn't caught up yet, rebase() will no longer be callable on
previous epochs since uint32(block.timestamp) overflows to a
low number.

Recommendation Consider whether the contract will survive for this long, if so,
consider using a larger integer for the timestamp or adding an
overflow mechanism (Uniswap for example designed their
timestamps to still work with overflows).

Resolution

INFORMATIONAL

All small data types have been moved to uint256.

RESOLVED

Page of 25 86 Global Issues Paladin Blockchain Security

Issue #07 The contracts do not work with reflective tokens

Severity

Description The whole VESQ system is completely incompatible with any
transfer-tax tokens. Whether as principle tokens, or forked versions
of VSQ or sVSQ, transfer taxes are not supported.

Recommendation Consider avoiding any tokens with transfer taxes, rebase
mechanisms or other special logic going on. These can be wrapped
in a simple wrapped equivalent that has no auxiliary transfer logic
going on.

Resolution

The client has confirmed reflective tokens are not going to be used
at all.

RESOLVED

INFORMATIONAL

Page of 26 86 Global Issues Paladin Blockchain Security

2.2	 VSQERC20

The VSQ token is the main token within the VESQ ecosystem. It is a simple ERC-20
token which is extended with EIP-2612 permit capabilities. Users may know of such
permit capabilities from when they break up Uniswap LP tokens. In this instance,
instead of explicitly needing to transmit an approve transaction, they can simply
sign it without any gas cost or transaction. The token can be minted freely by the
vault address, which is settable at any time by the contract owner.

2.2.1	 Token Overview

2.2.2	 Privileged Roles

The following functions can be called by the owner of the contract:

• mint

• setVault

• transferOwnership

• claimOwnership 

Address TBC

Token Supply Unlimited

Decimal Places 9

Transfer Max Size No maximum

Transfer Min Size No minimum

Transfer Fees None

Pre-mints None

Page of 27 86 VSQERC20 Paladin Blockchain Security

https://eips.ethereum.org/EIPS/eip-2612

2.2.3	 Issues & Recommendations

Issue #08 _burnFrom is marked as public

Severity

Description The contract contains a function, burnFrom, to allow burning VSQ
from another account given that this account has given you
approval. As is common with ERC-20 implementations, the public
burnFrom function calls the internal function _burnFrom. Within this
implementation however, _burnFrom is marked as public by
accident.

This does not have side effects and therefore does not affect
investors in any way. However, it might signal to third-party
reviewers that the code was not carefully reviewed before
deployment.

Recommendation Consider marking the _burnFrom function as internal.

Resolution

LOW SEVERITY

RESOLVED

Page of 28 86 VSQERC20 Paladin Blockchain Security

Issue #09 Transactionless approval permit mechanism still references zero
swap

Severity

Location Line 803 

require(signer != address(0) && signer == owner,

"ZeroSwapPermit: Invalid signature");

Description For single transaction approvals, EIP-2612-based permits are used.
These are known by users when they break up Uniswap LPs and
only need to sign the approval instead of actually creating a
transaction.

However, within the implementation used by VESQ, an error
message still references ZeroSwap. This might signal that the
codebase wasn’t reviewed before deployment to third-party
reviewers and is therefore best adjusted.

Recommendation Consider adjusting the error message.

Resolution

INFORMATIONAL

RESOLVED

Issue #10 Vault can be set to the zero address

Severity

Description The setVault function allows for the vault, which is the only
account that can mint VSQ, to be set to zero. It is common practice
to add a non-zero function to such set functions to prevent potential
errors going undetected.

Recommendation Consider adding non-zero checks to setVault.

Resolution

INFORMATIONAL

RESOLVED

Page of 29 86 VSQERC20 Paladin Blockchain Security

https://eips.ethereum.org/EIPS/eip-2612

2.3	 sVSQERC20

The sVSQERC20 (sVSQ) token is a rebasing token which increases the sVSQ supply
and therefore the user balances whenever the staking contract calls rebase on it. It
is kept somewhat backed by FRAX. It has a different approach than a normal
stablecoin that is usually pegged to a certain asset.

sVSQ follows a similar implementation to Ampleforth and is likely inspired by this
protocol.

2.3.1	 Token Overview

Address TBC

Token Supply Unlimited

Decimal Places 9

Transfer Max Size No maximum

Transfer Min Size No minimum

Transfer Fees None

Pre-mints 5,000,000 [to Staking contract]

Page of 30 86 sVSQERC20 Paladin Blockchain Security

2.3.2	 Privileged Roles

The following functions can be called by the owner of the contract:

• Initialize [callable once]

• setIndex [callable once]

• rebase

• transferOwnership

• claimOwnership 

Page of 31 86 sVSQERC20 Paladin Blockchain Security

2.3.3	 Issues & Recommendations

Issue #11 Infrequent rebases incentivize malicious parties to strategically
(re)order transactions for arbitrage and steal all rebased tokens off
the LP pairs

Severity

Description The contract periodically increases the user balances as part of the
rebases. If these rebases were to occur sufficiently infrequently, say
every week, they might be an incentive for either miners or
advanced users to strategically order their transactions in a way that
they temporarily hold a balance right before the rebase to receive
rewards on it.

Furthermore, even if rebases were to be made frequently, the
balance of the LP pairs will increase each time a rebase occurs. If
skim() is called on the LP pairs right after this occurs, the skimmer
will receive all tokens of that rebase. As there are many bots that do
this as soon as such an opportunity arises, going as far as using the
mempool to be sufficiently fast, it is almost certain that all rebases
on the LP pair tokens have been skimmed and dumped.

Recommendation Consider frequently rebasing and ensuring that no unprivileged user
can rebase from a contract which would allow them to flashloan
sVSQ temporarily. Furthermore, consider manually calling sync()
or skim() on the LP pairs through a contract that calls the rebase.
This way the tokens can either be incorporated in the reserves or
taken out of the pairs again to prevent unnecessary selling pressure.
It is important that this last step is done within a single transaction
by a contract as to not have someone frontrun the governance
attempt to take the tokens out again.

Resolution

The client has indicated that rebases will occur frequently. This
however does not prevent the skim issue which has been indicated
to not be a problem as no liquidity will be added to such pairs
because of this issue.

RESOLVED

LOW SEVERITY

Page of 32 86 sVSQERC20 Paladin Blockchain Security

Issue #12 DOMAIN_SEPARATOR can be made immutable

Severity

Description Variables that are only set in the constructor but never modified can
be indicated as such with the immutable keyword. This is
considered best practice since it makes the code more accessible
for third-party reviewers and saves gas.

It should be noted that within the EIP-712 draft implementation by
OpenZeppelin, the DOMAIN_SEPARATOR is somewhat mutable as to
allow the chainId to evolve. This logic has however not been
implemented within this implementation of EIP-712.

It should finally be noted that the Permit typehash uses value as a
parameter, while the function uses amount. It could be better to use
value as the permit parameter as well.

Recommendation Consider making this variable explicitly immutable.

Resolution

INFORMATIONAL

RESOLVED

Page of 33 86 sVSQERC20 Paladin Blockchain Security

Issue #13 Under a constant and small circulating supply, the non-circulating
supply starts increasing more rapidly with every rebase

Severity

Location rebaseAmount =

profit_.mul(_totalSupply).div(circulatingSupply_);

Description The rebase amount is based upon the profit to rebase multiplied by
the total supply divided by the circulating supply. This is because
the sVSQ contract is unable to discriminate against sVSQ within the
staking contract during rebases. Contrary to implementations like
SafeMoon, there is no way to exclude accounts from rebases. If no
adjustment would be made, a portion of the profit would be lost to
the sVSQ that is sitting in the Staking contract. To account for this,
the rebase amount is increased to ensure that the circulating supply
exactly gets that profit.

If then for some reason the circulatingSupply_ is kept very low,
let’s say at a nominal 1, the _totalSupply increases more rapidly
with every rebase. If profit is also 1, and _totalSupply is 10,
_totalSupply would increase to about 20, during the next rebase of
1 profit, _totalSupply would increase to 40. In this situation the
MAX_SUPPLY could be reached rather quickly.

This could be a potential denial of service attack during the
bootstrapping of an Ohm protocol fork, while there are no stakers
yet.

Recommendation Consider this situation carefully. Consider the rate of (exponential)
growth of _totalSupply under the current setup. This issue will be
resolved on the notice that the client has inspected this rate of
growth and that MAX_SUPPLY is not to be reached in an extremely
long time, even if a majority of the stakers decides to unstake.

Resolution

INFORMATIONAL

This issue can be marked as resolved once the vesq deployment has
stabilized and Paladin recognizes it is unlikely that this cycle is
entered into.

ACKNOWLEDGED

Page of 34 86 sVSQERC20 Paladin Blockchain Security

2.4	 wsVSQ

The wsVSQ token wraps the sVSQERC20 token in a fixed balance alternative.
Instead of increasing in balance with every rebase, wsVSQ can be liquidated for
more and more sVSQ over time.

2.4.1	 Token Overview

Address TBC

Token Supply Unlimited

Decimal Places 9

Transfer Max Size No maximum

Transfer Min Size No minimum

Transfer Fees None

Pre-mints None

Page of 35 86 wsVSQ Paladin Blockchain Security

2.4.2	 Issues & Recommendations

Issue #14 Gas optimization: Usage of decimals as a precision multiplier

Severity

Description The contract uses the wsVSQ decimals as a precision multiplier,
however, as this variable is not immutable this creates a small ~200
gas overhead every time it is read from memory.

Recommendation Consider either using a constant precision multiplier, caching the
decimals in an immutable variable or making decimals immutable.

Resolution

Decimals have been made immutable.

RESOLVED

INFORMATIONAL

Page of 36 86 wsVSQ Paladin Blockchain Security

2.5	 BondDepository

The Bond Depository is one of the main contracts within VESQ. It allows users to
sell their LP tokens for VSQ futures which vest linearly over the next period.
Periodically, the rate at which VSQ is given for LP tokens adjusts upwards or
downwards which can be freely configurable by the governance. No more bonds can
be issued than a certain maximum. The contribution to this maximum decays over
time allowing for more bonds to be issued. Vested VSQ can be instantly staked if
desired by the user. The DAO receives a percentage of the minted VSQ according to

the terms.fee parameter.

2.5.1	 Privileged Roles

The following functions can be called by the owner of the contract:

• initializeBondTerms

• setBondTerms

• setAdjustment

• setStaking

• transferOwnership

• claimOwnership 

Page of 37 86 BondDepository Paladin Blockchain Security

2.5.2	 Issues & Recommendations

Issue #15 Vested amount is relocked on deposit, even if the deposit is made
by third-parties allowing for targeted Denial of Service

Severity

Description Currently the deposit function, which is used to deposit LP tokens
into a bond, will reset the vesting term of any previous deposits.
The vested duration since the last redemption would therefore be
lost if the user deposits again. This can be used by malicious parties
to create griefing for different wallets. The griefing goes as follow:

1. Listen to the BondRedeemed method in the mempool. This way
you know when a user is about to claim their vested portion.

2. As soon as you detect it, you send a deposit to them with a tiny
amount. This resets their timer.

3. They now need to wait a whole bond duration again.

Repeat this whenever you detect BondRedeemed in the mempool and
you have effectively locked in all VSQ.

Recommendation Consider either removing the functionality to deposit to another
account or making this a whitelisted operation. The same could be
considered for the redeem function to reduce the attack vector.

We also recommend removing this functionality from the redeem
method.

Resolution

HIGH SEVERITY

A whitelist has been added to both deposits and redemption to
other accounts. This means only whitelisted contracts and wallet
can still undertake this action, preventing any unprivileged party
from abusing this.

RESOLVED

Page of 38 86 BondDepository Paladin Blockchain Security

Issue #16 Adjustment target is never reached

Severity

Location Lines 976-994

function adjust() internal {

 uint timeCanAdjust =

adjustment.lastTime.add(adjustment.buffer);

 if(adjustment.rate != 0 && block.timestamp >=

timeCanAdjust) {

 uint initial = terms.controlVariable;

 if (adjustment.add) {

 terms.controlVariable =

terms.controlVariable.add(adjustment.rate);

 if (terms.controlVariable >=

adjustment.target) {

 adjustment.rate = 0;

 }

 } else {

 terms.controlVariable =

terms.controlVariable.sub(adjustment.rate);

 if (terms.controlVariable <=

adjustment.target) {

 adjustment.rate = 0;

 }

 }

 adjustment.lastTime = uint32(block.timestamp);

 emit ControlVariableAdjustment(initial,

terms.controlVariable, adjustment.rate, adjustment.add);

 }

}

Description The code contains an adjust function which allows adjusting the
control variable with a fixed increment or decrement after a fixed
period. It furthermore contains a target after which the adjustment
stops once it is reached.

However, due to the code implementation, the target might be
slightly missed, as the adjustment will only stop after it is passed
due to the increments being rather large.

Furthermore, if the target would be set close to zero, the
subtraction might cause this to revert.

LOW SEVERITY

Page of 39 86 BondDepository Paladin Blockchain Security

Recommendation Consider setting the info rate to the target once the target has been
reached. Consider also resetting the target as to have a cleaner
state.

It should be noted that this adjustment method is also slightly
wasteful in gas as it often re-reads terms.controlVariable from
storage. If gas-usage is a concern, consider caching some of these
variables.

Resolution

The client has implemented the recommended behavior and added
logic to prevent the subtraction underflow.

RESOLVED

Page of 40 86 BondDepository Paladin Blockchain Security

Issue #17 Deposit is vulnerable to reentrancy if the principle has a reentrancy
vector

Severity

Description The deposit function currently does adjustments of the totalDebt
and value calculations after the principle has been transferred. This
allows an external party to inject code to avoid the maxDebt
calculation and furthermore manipulate (the current calculator only
allows expensive increment-only manipulation by sending tokens to
the pair and calling sync) the value in deposit compared to the local
value if a token which allows reentrancy is added.

With such a token, maxDebt could be completely circumvented in
the current design.

This issue is marked as low severity as we expect principle tokens to
be LP pairs mostly, however, we did notice that these can be single-
asset on existing Ohm forks as well.

Recommendation Consider reorganizing the deposit function to adhere to checks-
effects-interactions.

Resolution

The deposit function now has a reentrancy guard: The client should
however remember that this only prevents reentrancy in this specific
function and not in other parts of the system like the LP pair.

RESOLVED

LOW SEVERITY

Page of 41 86 BondDepository Paladin Blockchain Security

Issue #18 The maximum debt can be exceeded by at most maxPayout

Severity

Location Line 866

require(totalDebt <= terms.maxDebt, "Max capacity

reached");

Description Currently the check that the maximum amount of debt is not
exceeded does not include the newly created debt, this allows for
the maximum debt to be exceeded by at most maxDebt.

Recommendation Consider including value, which is the new debt, in this
requirement.

require(totalDebt.add(value) <= terms.maxDebt, "Max

capacity reached");

Resolution

LOW SEVERITY

The client has updated the codebase to properly validate the
maxDebt:

uint value = ITreasury(treasury).valueOf(principle,

_amount);

require(totalDebt.add(value) <= terms.maxDebt, "Max

capacity reached");

RESOLVED

Page of 42 86 BondDepository Paladin Blockchain Security

Issue #19 bondPriceInUSD is denominated in the decimals of the other token
in the LP and might not be correct for non stablecoin LPs

Severity

Description bondPriceInUSD is denominated in the decimals of the other token
in the LP and might not be correct for non stablecoin LPs. As this
function is primarily used on the frontend this issue has been
marked as informational.

❗ standardizedDebtRatio has similar behavior.

Recommendation Consider handling this correctly on the frontend.

Resolution

The client has indicated this is handled correctly.

RESOLVED

INFORMATIONAL

Page of 43 86 BondDepository Paladin Blockchain Security

Issue #20 initializeBondTerms has no validation

Severity

Description The initializeBondTerms function has no validation of the
parameters that are used for initialization of the bond terms when
the contract is first deployed.

❗ In addition, controlVariable can go to zero with the
adjustments, making the initializeBondTerms available to be
called again. We are unsure why there should be an initialDebt on
initialization function.

❗ The setAdjustment function on the other hand becomes
completely locked out if controlVariable ever reaches zero, which is
strange behavior to have defined so implicitly.

Recommendation Consider adding proper validation for this function and remove the
initialDebt parameter if there is no need for an initial debt.

Resolution

INFORMATIONAL

Validation has been added to many of the parameters. Re-
initialization is prevented with a check on the lastDecay parameter.
Note that maxPayout still lacks validation.

RESOLVED

Page of 44 86 BondDepository Paladin Blockchain Security

Issue #21 Contract does not work with a zero vestingTerm

Severity

Description The debtDecay function reverts due to a division by zero if
terms.vestingTerm is set to zero. Furthermore, the
percentVestedFor function will always return a zero vested
percentage if the remaining vesting duration is zero (eg. with a zero
vestingTerm). This should more accurately return 10,000 (100%) as
at this point the bonds instantly vests. The contract would therefore
become unusable if the vestingTerm is zero.

Recommendation Consider making the requirement of a non-zero vesting term
explicit when the term is set.

Resolution

Within initializeBondTerms and setBondTerms, the non-zero
vestingTerm requirement has been made explicit.

RESOLVED

INFORMATIONAL

Page of 45 86 BondDepository Paladin Blockchain Security

Issue #22 Contract could theoretically run out of VSQ

Severity

Description There is currently no guarantee that the number of VSQ that the
depository receives from the treasury is sufficient to cover the
payouts. This is because a profit is withheld by the treasury and a
fee is sent to the DAO.

Recommendation Consider making the requirements within the parameters more
explicit as to prevent the situation where more VSQ can be
allocated to payouts than is maintained in the depository. A crude
check is to simply reduce the payout to at most the amount received
during the deposit function.

Resolution

INFORMATIONAL

The client has explained how an underflow within the bond
depository significantly reduces the chances of this situation
occurring. This is because within the bond, it calculates the amount
of profit the treasury can keep for itself and this profit would
become negative if the treasury wouldn't give enough tokens for the
payout.

The only situation where this issue can remain relevant is if the value
calculator within the treasury returns a different value within the
bond and treasury.

Under the current bond calculator this is not possible without
reentrancy vectors between the two calls in a single atomic
transaction.

This issue has therefore been marked as resolved since VESQ
expects to not use any other calculator.

RESOLVED

Page of 46 86 BondDepository Paladin Blockchain Security

2.6	 EthBondDepository

The EthBondDepository is similar to the BondDepository but differs in that it allows
for MATIC and WMATIC to be deposited. It furthermore uses ChainLink to
calculate the UI price.

As the EthBondDepository contract is extremely similar to BondDepository, any
recurring issues have been omitted from this section of the audit. Users can assume
that most if not all of the issues within BondDepository are also present within
EthBondDepository.

2.6.1	 Privileged Roles

The following functions can be called by the owner of the contract:

• initializeBondTerms

• setBondTerms

• setAdjustment

• setStaking

• transferOwnership

• claimOwnership 

Page of 47 86 EthBondDepository Paladin Blockchain Security

2.6.2	 Issues & Recommendations

Issue #23 priceFeed is internal

Severity

Description Important variables that third-parties might want to inspect should
be marked as public so that these third-parties can easily inspect
them through the explorer, web3 and derivative contracts.

Recommendation Consider marking this variable as public.

Resolution RESOLVED

LOW SEVERITY

Issue #24 Phishing: Frontend could trick users into sending too much MATIC
for deposits

Severity

Description Currently the deposit requires that at least sufficient MATIC is sent
to cover the provided amount the user wants; however, there is no
check that it must be equal. If the frontend is ever compromised,
this could be abused to send excessive MATIC to the contract,
without the users earning VSQ futures in return.

The comment on refundETH furthermore indicates that the excess
MATIC goes to the user, while it ironically goes to the DAO.

Recommendation Consider fixing these errors

Resolution

A proper refund mechanism has been introduced.

RESOLVED

INFORMATIONAL

Page of 48 86 EthBondDepository Paladin Blockchain Security

Issue #25 bondPrice calculation is inconsistent with BondDepository

Severity

Description

The two bondPrice calculations differ in the fact that the
BondDepository still adds 1 to the price while the
EThBondDepository does not.

Note that the difference in division is not a problem since both
contracts correctly account for the different precision rate.

Recommendation Consider explaining this inconsistency and if it is not necessary,
consider making both contracts more consistent.

Resolution

INFORMATIONAL

The client has indicated that they are okay with this small
inconsistency, as the end result is the same.

ACKNOWLEDGED

Page of 49 86 EthBondDepository Paladin Blockchain Security

BondDepository EthBondDepository

price_ =

terms.controlVariable.mul(d

ebtRatio()).add(1000000000

).div(1e7);

price_ =

terms.controlVariable.mul(d

ebtRatio()).div(1e5);

Issue #26 The protocol will likely malfunction if ChainLink feeds for MATIC
will be different than 8 decimals

Severity

Description Throughout the contract, the assumption is made that ChainLink
feed returns a MATIC price with 8 decimals. If Chainlink were to
change this in the future, it will cause multiple issues.

Recommendation Consider upgrading the protocol to dynamically fetch the MATIC
token’s .decimals().

It should be noted that this update needs to be made in multiple
locations.

Resolution

The client has indicated that they will exclusively use feeds with 8
decimals. They've also made this requirement explicit in the
constructor of the contract.

RESOLVED

INFORMATIONAL

Page of 50 86 EthBondDepository Paladin Blockchain Security

2.7	 Staking

Staking is a contract that lets investors stake their VSQ into an identical amount of
sVSQ. sVSQ, which is essentially staked VSQ, increases in quantity over time
through rebases. When funds are deposited, they are locked into the
StakingWarmup for a number of epochs, after this period, the sVSQ (including
potentially rebased amounts) becomes claimable using the claim contract. If VESQ
chooses a zero-length locking period, they can a StakingHelper contract that stakes
and immediately calls claim within a single transaction. This avoids users from
having to make these two transactions themselves. If the lock were to be present,

users could call forfeit() to retrieve their initial VSQ and forgo any increase in the

locked sVSQ amount.

Users can call the unstake function to trade in an identical amount of sVSQ for
VSQ. It should be noted that sufficient VSQ needs to be present in the Staking
contract, but this is governed by the other components of the systems.

It should be noted that after the zero length warmup period has expired, anyone

can call claim for you to move the now unlocked sVSQ to your wallet. Users should

be mindful of this behavior in case they interact with any protocols that blindly take
their whole sVSQ balance.

Finally, the contract can send a portion of its sVSQ balance to the locker contract.
The locker contract is out of scope but the basics of this functionality is that the
staking contract will see this as an outstanding loan (an asset) and a debt (new
sVSQ in circulation), therefore there is no direct effect on the rebasing. However, the
sVSQ which is rebased onto the outstanding debt cannot be withdrawn into the
staking contract anymore, we therefore assume that this rebased sVSQ would be
used for other means.

Page of 51 86 Staking Paladin Blockchain Security

2.7.1	 Privileged Roles

The following functions can be called by the owner of the contract:

• setContract

• transferOwnership

• claimOwnership 

Page of 52 86 Staking Paladin Blockchain Security

2.7.2	 Issues & Recommendations

Issue #27 Staked amount is relocked on subsequent stakes, even if the stake
is made by third-parties allowing for targeted Denial of Service

Severity

Description Currently, the stake method which is used to stake VSQ to receive
sVSQ has a capability to use a WarmUp strategy on staking.
Everytime someone stakes, their stake is locked by a duration
called the warmupPeriod. After this period is finished, the staker
can claim their rewards.

However, since users can stake for others, this can be used to create
griefing for different wallets. The griefing goes as follow:

1. Listen to the unstake() method being called in the mempool.
This way you know when a user is about to claim their staking
rewards.

2. As soon as you detect it, call stake() with a small amount. This
resets their warmup timer.

3. They now need to wait a whole new warmup period again.

Repeat this whenever you detect a stake call in the mempool and
you've effectively locked in all the rewards in the staking contract.

Recommendation Consider removing the functionality to stake to another account or
making this a whitelisted operation or never use a warmup
approach on staking by keeping the warmupPeriod to 0.

Resolution

HIGH SEVERITY

The client has forced the warmupPeriod to always be zero by
making it constant. The warmup functionality is therefore disabled
for all practical reasons.

RESOLVED

Page of 53 86 Staking Paladin Blockchain Security

Issue #28 Lock logic might be wrongly defined

Severity

Description The contract contains two functions: giveLockBonus and
returnLockBonus which allow to essentially loan out some of the
sVSQ tokens to the lock contract. However, when the loan is repaid,
the lock retains all rebased rewards. This is not necessarily wrong
but as no lock contract was included within the scope of this audit,
we are unsure about whether this is desired.

From a technical perspective, the current implementation does
make sense as if the “interest” would be sent back,
returnLockBonus would add credit to the staking contract balance
which might have unintended side-effects.

Recommendation Consider whether this is desired behavior.

Resolution

LOW SEVERITY

The lock logic has been removed.

RESOLVED

Issue #29 Rebases can be arbitraged/frontran

Severity

Description All through the contract protects against flash loaning VSQ to use it
to capture rebases, an advanced party could still purchase VSQ the
block before a rebase occurs to then sell it afterwards.

If this party has some control over their timing or some control to
prevent other users from arbitraging their purchase, this could be
profitable and result in less sVSQ for the other stakers.

Recommendation Consider rebasing very frequently or using a staking method where
VSQ staked is directly incorporated. Locking stakes as is done in
Ohm is also possible.

Resolution

The client has indicated they will rebase sufficiently often to make
such arbitrages unprofitable.

RESOLVED

INFORMATIONAL

Page of 54 86 Staking Paladin Blockchain Security

2.8	 StakingDistributor

The distributor is a contract that mints VSQ to the governance configured recipients
every time an epoch ends. The amount of VSQ to mint is a percentage set by the
governance of the total VSQ supply. The distributor therefore has the ability to
trigger a minting from the Treasury to all the recipients added by the governance at
every epoch. Therefore, every time a rebase is done at the end of an epoch, the
VSQ total supply increases. After each distribution the rate of the distribution is
adjusted based on an adjustment variable that is set by the governance.

Users should carefully keep an eye on this contract as it has the power of
distributing the whole VSQ supply (and more!) to recipients at every epoch.

2.8.1	 Privileged Roles

The following functions can be called by the owner of the contract:

• addRecipient [! high risk]

• removeRecipient

• setAdjustment [! high risk]

• transferOwnership

• claimOwnership 

Page of 55 86 StakingDistributor Paladin Blockchain Security

2.8.2	 Issues & Recommendations

Issue #30 Adjustment target is never reached

Severity

Location function adjust(uint _index) internal {

 Adjust memory adjustment = adjustments[_index];

 if (adjustment.rate != 0) {

 if (adjustment.add) { // if rate should increase

 info[_index].rate =

info[_index].rate.add(adjustment.rate); // raise rate

 if (info[_index].rate >= adjustment.target)

{ // if target met

 adjustments[_index].rate = 0; // turn off

adjustment

 }

 } else { // if rate should decrease

 info[_index].rate =

info[_index].rate.sub(adjustment.rate); // lower rate

 if (info[_index].rate <= adjustment.target)

{ // if target met

 adjustments[_index].rate = 0; // turn off

adjustment

 }

 }

 }

}

Description The code contains an adjust function which allows adjusting the
emission rate towards a recipient with a fixed increment or
decrement after every distribution. It furthermore contains a target
after which the adjustment stops once it is reached.

However, due to the code implementation, the target might be
slightly missed, as the adjustment will only stop after it is passed
due to the increments being rather large.

Furthermore, if the target would be set close to zero, the
subtraction might cause this to revert.

LOW SEVERITY

Page of 56 86 StakingDistributor Paladin Blockchain Security

Recommendation Consider setting the info rate to the target once the target has been
reached. Consider furthermore resetting the target as to have a
cleaner state.

info[_index].rate = adjustment.target;

delete adjustments[_index];

It should be noted that this adjustment method is also slightly
wasteful in gas as it often re-reads info[index].rate from storage.
If gas-usage is a concern, consider caching some of these variables.

Resolution

The recommended code section has been implemented together
with subtraction overflow protection.

RESOLVED

Issue #31 Unbounded gas usage due to extensive for-loop usage

Severity

Description Many for loops are used to iterate over the recipients. If there are
many recipients, this causes high gas cost and could increase in gas
cost to the point where the distribute function would become
uncallable. Since removeRecipient does not reduce the loop size,
there could be a point in time where a new Distributor would have
to be deployed as gas cost has risen so much.

Recommendation Consider enforcing a limit of recipients within addRecipient, as a
reminder that this is not unbounded. Consider also reusing indices if
recipients are removed by using the traditional array index deletion
pattern where the last index is moved into the deleted index, and
the array is shortened by one. This pattern requires a re-linking of
the adjustments mapping to the new index.

Resolution

Up to 5 recipients can be added.

RESOLVED

LOW SEVERITY

Page of 57 86 StakingDistributor Paladin Blockchain Security

Issue #32 Lack of validation

Severity

Description Currently there is no upper limit to the rate which a recipient can
receive newly minted VSQ at. If the governance of this contract was
ever compromised, or user error occurred, the whole supply and
more could be minted to a recipient by accident.

Recommendation Consider requiring the rates and target to be within reasonable
limits, eg. 5% of the total supply at most. Consider limiting the
number of recipients to a reasonable number, eg. 5 recipients at
most.

Resolution

LOW SEVERITY

A maximum rate of 5e4 has been installed (5%).

RESOLVED

Issue #33 Adjustments are not reset when recipient is removed

Severity

Description Within the removeRecipient function, the relevant adjustment
struct is not deleted. Deleting this struct might be considered
cleaner and could furthermore reduce the gast cost of
removeRecipient.

If the code is ever updated to reuse the empty index on deletion
(array index deletion pattern), deleting the adjustment would also
be a defensive move if the new codebase forgets to also move the
adjustment into the empty index.

Recommendation Consider resetting the adjustment on removeRecipient.

Resolution

Adjustments are now reset.

RESOLVED

INFORMATIONAL

Page of 58 86 StakingDistributor Paladin Blockchain Security

2.9	 StakingHelper

The StakingHelper is a simple utility contract that has just 1 method that does a
stake and a claim within one transaction for the staking contract. As VESQ does not
use the locking functionality introduced in Ohm, they want to avoid the requirement
that people have to call “claim” themselves manually after each staking.

Page of 59 86 StakingHelper Paladin Blockchain Security

2.9.1	 Issues & Recommendations

Issue #34 Phishing: stake function allows to stake towards a different address

Severity

Description The stake function withdraws VSQ tokens from the transaction
sender; however, these tokens are granted to the recipient which is
a parameter of the stake function. If the frontend is ever
compromised, it could be expected that the hacker might simply set
the recipient parameter to their wallet to steal all newly staked
sVSQ.

Most advanced users have become adept enough to check the
contract which they are interacting with, but not yet the parameters,
as these are displayed in bytecode by Metamask.

This issue applies to the Staking contract as well.

Recommendation Consider only allowing staking to one’s own account. Consider also
making this fix in Staking if it is a user-facing contract.

❗ If this recommendation is not implemented, we recommend non-
zero validation in the staking contract to provide an explicit error
message if the recipient is set to the zero address to prevent user
errors. It should be noted that due to the overrides within the sVSQ
token, these tokens no longer revert on transfers to the zero
address, VSQ tokens still do.

Resolution

This is still possible, however, a non-zero check was added to
prevent user error.

ACKNOWLEDGED

LOW SEVERITY

Page of 60 86 StakingHelper Paladin Blockchain Security

2.10	 StakingWarmup

The StakingWarmup contract is a very simple helper contract that is used to store
the staked VSQ balances of users. It is used exclusively by the Staking contract
though everyone can of course transfer both sVSQ and VSQ to it manually.

2.10.1	 Privileged Roles

The following functions can be called by the Staking contract:

• retrieve

2.10.2	 Issues & Recommendations

No issues found.

Page of 61 86 StakingWarmup Paladin Blockchain Security

2.11	 StandardBondingCalculator

The StakingBondingCalculator was designed by Ohm as an LP valuing contract that
would use 1 OHM = 1 DAI as the values of the individual components of the LP pair.
It uses the correct approach of valuing LP pairs by rebalancing the pair as to have
equally valued reserves. It was however only designed to work for OHM+stable
pairs and assumes that OHM is worth $1 to derive the value of the pair.

Page of 62 86 StandardBondingCalculator Paladin Blockchain Security

2.11.1	 Issues & Recommendations

Issue #35 Does not support LP pairs where the second currency has less than
9 decimals

Severity

Location Line 278 

uint decimals =

token0.add(token1).sub(IERC20(_pair).decimals());

Description The StandardBondingCalculator does a decimal adjustment to
make sure that whatever the decimals of the two LP tokens, the
resulting number of decimals is 18. This calculation is:

decimals(token0) + decimals(token1) - decimals(pair)

As VSQ has 9 decimals and the pair 18 decimals, the paired token
must have at least 9 decimals or this calculation will revert due to
underflow. This is notoriously not the case for most stablecoins on
avalanche making this contract unusable for these.

Recommendation Consider adjusting the logic to start multiplying instead of dividing if
the decimals would be negative. The client could consider an if-else
branch for if the pair decimals are smaller than the sum of the token
decimals and invert the logic for the new branch.

Resolution

The client has added logic to adjust the decimals in either direction
supporting the previously unsupported cases.

RESOLVED

MEDIUM SEVERITY

Page of 63 86 StandardBondingCalculator Paladin Blockchain Security

Issue #36 StandardBondingCalculator can only value pairs in which the
two tokens have equal “value”

Severity

Description The StakingBondingCalculator was designed by Ohm as an LP
valuing oracle that would use 1 OHM = 1 DAI as the oracle value to
value the number of OHMs (or DAI) the LP is worth. It was only
designed to work for OHM+stable pairs. The bonding calculator is
therefore insufficiently equipped for tokens with unequal
‘value’ (within parentheses as the value of VSQ is not equal to $1,
however the system uses this to calculate the value).

Recommendation Consider this carefully and consider using different oracles if other
LP pairs need to be priced, or if pricing needs to occur at the
current VSQ value. The client should remember that pricing LPs is
notoriously difficult and that an approach involving K and oracle
prices would still be required. Furthermore the client should
remember that within the Treasury system, the LPs are not valued at
their present value, instead they are valued at their eventual $1
value.

Resolution

The client has indicated they will not be using non-stablecoin pairs.

RESOLVED

LOW SEVERITY

Page of 64 86 StandardBondingCalculator Paladin Blockchain Security

Issue #37 Markdown will misbehave if an LP with two non-VSQ tokens is
provided

Severity

Location Lines 299-303 

if (IUniswapV2Pair(_pair).token0() == Time) {

 reserve = reserve1;

} else {

 reserve = reserve0;

}

Description Currently the markdown function assumes it is being provided a
VSQ/OTHER LP, however, if it were to be provided an OTHER/
OTHER LP, it would wrongly assume that the second token is in fact
VSQ.

Recommendation Consider this carefully in all locations where markdown is used, or
consider making this function explicitly revert in this circumstance.

Resolution

LOW SEVERITY

A requirement for one of the tokens to be VSQ has been included.

RESOLVED

Issue #38 markdown function is vulnerable to price manipulation

Severity

Description The markdown function can be manipulated at a relatively low cost
by wrapping the call in a buy and sell (or vice-versa) to adjust the
reserves. This leads to the markdown function, which is used to
calculate the relative value of the pair (compared to the long-term
value), being unuseable for any oracle functionality as it can be
manipulated.

Recommendation The client should take not to never use this function as an oracle or
a trusted source.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 65 86 StandardBondingCalculator Paladin Blockchain Security

2.12	 Treasury

The treasury is one of the central components within VESQ. It keeps all the
underlying assets that are deposited through the bonds and keeps track of debt if
any other components borrow these treasuries. It is using a queue approach to
change the governance addresses for different actions inside the treasury which is
very similar to a timelock. It also gives the possibility for certain addresses to
borrow from the Treasury (against sVSQ) and repay the borrowed amount. It
furthermore allows the possibility to repay the debt with VSQ. Finally and most
importantly, it allows any reward manager (eg. the staking distributor) to mint VSQ.
It should be noted that no more VSQ can be minted than the total number of
reserves in $. If VSQ would be freely exchangeable for the reserves, this puts a
lower limit of $1 on the value of VSQ as long as no reserves are lost.

It should be noted that the treasury code is currently written extremely verbose and
implementing a dependency like AccessControl (RBAC) might simplify the contract
greatly.

Page of 66 86 Treasury Paladin Blockchain Security

2.12.1	 Privileged Roles

The following functions can be called by the Staking contract:

• auditReserves

• toggle

• incurDebt

• withdraw

• deposit

• repayDebtWithReserve

• repayDebtWithOhm

• manage

• mintRewards

• queue

• transferOwnership

• claimOwnership 

Page of 67 86 Treasury Paladin Blockchain Security

2.12.2	 Issues & Recommendations

Issue #39 Lack of component safeguards in a system that plans to increase in
number of components over time is considered brittle

Severity

Description The treasury is responsible for minting new VSQ. Any account with
the reward manager role can do this. This however also means that
if any single of these accounts or contracts would be compromised,
the whole system would fail.

Such a practice is not bad in itself, but it is a setup we call ‘brittle’.
In general, when the security of a system is based upon all
components acting correctly, and this set of components is planned
to increase over time, odds are that one day a component will
misbehave and the whole system goes under. This has been
witnessed with Cream recently on Ethereum and more traditionally
with PancakeBunny (and many of their forks) on BSC and other
chains.

Recommendation Consider incorporating hourly limits to all functions within the
treasury, each account can only mint/borrow/… up to their hourly
limit every hour. Permissions should be pausable instantly by the
DAO. With such a setup, if a new component ever turns out to have
a vulnerability, only a few hours of mints might be stolen.

Resolution

LOW SEVERITY

The client has acknowledged the implications of not having hourly
limits and they will take full responsibility for making sure the
components will behave as expected.

ACKNOWLEDGED

Page of 68 86 Treasury Paladin Blockchain Security

Issue #40 Adding a token as both a liquidity and reserve token would cause it
to be double counted in the treasury value

Severity

Description Currently the function that calculates the value of the reserves does
not validate that a token has already been counted. This means that
if the same token is added twice to the reserves lists, this token
would be double counted.

The client has considered this possibility by not allowing a token to
be added twice to either the reserve tokens list or the liquidity
tokens list. However, the possibility remains open that the token is
added to both the reserve and liquidity tokens list once, which
would cause double counting.

Recommendation Consider either not double counting in the reserve value calculating
function, or consider not allowing a token to be added to either of
these lists.

Resolution

LOW SEVERITY

Checks have been added to prevent this double addition.

RESOLVED

Page of 69 86 Treasury Paladin Blockchain Security

Issue #41 repayDebtWithVSQ has inconsistent privilege requirements which
allows for slight privilege escalation

Severity

Description Currently the repayDebtWithVSQ function requires the sender to
have the “debtor” role, which essentially means they can borrow
from the reserve. However, this operation also does a withdrawal
from the reserve which normally requires the “reserve spender”
role. This role verification is not made however.

To clarify on this: repayDebtWithVSQ is essentially a combination of
withdraw, which allows you to withdraw reserves if you burn an
equivalent amount of VSQ and repayDebtWIthReserve, which
allows you to repay your debt by transferring tokens to the reserve.
repayDebtWithVSQ combines these by having you repay your debt
by burning VSQ.

As the roles already have very large privileges within the system,
this issue is only marked as low risk since it hardly increases the risk
profile.

Recommendation Consider also requiring the reserveSpender role for the
repayDebtWithVSQ function, as this behavior seems inconsistent
with what the roles should be allowed to do.

Resolution

repayDebtWithVSQ now requires the reserve spender role as well.

RESOLVED

LOW SEVERITY

Page of 70 86 Treasury Paladin Blockchain Security

Issue #42 Unnecessary comparison to true on withdraw function

Severity

Location Line 364

require(isReserveSpender[msg.sender] == true, "Not

approved");

Description In the withdraw function, the require checks to see if the
msg.sender is in the isReserveSpender mapping, which is a
mapping of address=>bool. Therefore comparison to true is
redundant.

Recommendation Consider removing the comparison to true.

require(isReserveSpender[msg.sender], "Not approved");

Resolution RESOLVED

INFORMATIONAL

Page of 71 86 Treasury Paladin Blockchain Security

Issue #43 Reserve value mechanism could cause withdrawals and other
operations to temporarily fail

Severity

Description Whenever tokens are added or deleted to the Treasury, the present
(USD) value of them is added or subtracted to the totalReserves.
However, if their value increases over time for some reason,
withdrawals might revert because the functions try to reduce
totalReserves. This could furthermore be abused if ever an oracle
(bondCalculator) is used that turns out to be manipulatable, in this
case a malicious party can always increase the value of the currency
before it is withdrawn to potentially cause that withdrawal to revert.

Recommendation As this is a purely informational issue no specific steps need to be
taken unless the client considers this prohibitive. The client should
simply make sure to call auditReserves if withdrawals start failing
and build no functionality that relies on withdrawals to work 100%
of the time (otherwise this functionality should call auditReserves).

If withdrawals start failing often due to DoS, the client should
remember this issue and double check if some oracle is
malfunctioning.

Resolution

The client has indicated they will call auditReserves if this issue is
ever detected.

RESOLVED

INFORMATIONAL

Page of 72 86 Treasury Paladin Blockchain Security

Issue #44 Lack of safeTransfer usage within incurDebt

Severity

Location Line 398

IERC20(_token).transfer(msg.sender, _amount);

Description In the incurDebt function, the transfer method is used to transfer
tokens from Treasury to the msg.sender. This will not work for
tokens that will return false on transfer (or malformed tokens that
do not have a return value).

Recommendation Consider using safeTransfer instead of transfer as is done
throughout most of this contract.

Resolution

INFORMATIONAL

RESOLVED

Issue #45 Manage will always do an excessReserve check even if the token is
not within the liquidity or reserves tokens

Severity

Location Lines 451-452 

uint value = valueOf(_token, _amount);

require(value <= excessReserves(), "Insufficient

reserves");

Description Currently, the reserves are only comprised of “liquidity” and
“reserve” tokens. Therefore, if an asset which is not within these two
categories is withdrawn from the Treasury, it should not affect the
excess reserves and the excess reserves validation is therefore
redundant.

Recommendation Consider wrapping the excess reserve check in an if statement that
only executes if the token that is being withdrawn is part of the
liquidity or reserves tokens. Otherwise consider requiring the token
being withdrawn to be within either of these categories.

Resolution

INFORMATIONAL

The check has been wrapped in an if-statement.

RESOLVED

Page of 73 86 Treasury Paladin Blockchain Security

2.13	 VSQZapIn

The VSQZapIn contract is a zapping contract that will allow users to deposit into
the BondDepository within a single transaction. It currently does not support
transfer-tax tokens at all. It can use any type of exchange contract to fulfill the
quotes and is not limited to Uniswap-v2 compatible exchanges. It furthermore uses
an advanced calculation method similar to Zapper to almost perfectly balance the
pair when adding liquidity, this reduces potential tokenomical waste.

2.13.1	 Privileged Roles

The following functions can be called by the Staking contract:

• toggleContractActive

• setApprovedTargets

• addPairAddress

• removePairAddress

• addReserveAddress

• removeReserveAddress

• renounceOwnership

• transferOwnership

Page of 74 86 VSQZapIn Paladin Blockchain Security

2.13.2	 Issues & Recommendations

Issue #46 Phishing risk: Users could be mislead into undesirable swaps

Severity

Description The contract allows the governance to provide different swap
exchanges and allows the inputs to be set in a way that potentially
tokens could be lost by the user if they do not pay careful attention.
Furthermore the “to” address which would receive the VSQ features
can be changed to a malicious address.

Recommendation Consider carefully protecting the frontend against any malicious
take-overs (as have happened in the past with both Cream and
PancakeSwap). Consider furthermore educating the users on
checking their transactions carefully.

Resolution

LOW SEVERITY

Although this is possible, the client has indicated that their frontend
has undergone proper security steps and that they will document
this within their docs.

PARTIALLY RESOLVED

Issue #47 swapData can be denoted as calldata throughout the contract

Severity

Description As all internal functions that use the swapData bytes are exclusively
called by external functions that provide these bytes, the swapData
parameters can always be denoted as calldata to save significantly
on gas cost.

Recommendation Consider moving all swapData parameters to calldata.

Resolution RESOLVED

INFORMATIONAL

Page of 75 86 VSQZapIn Paladin Blockchain Security

2.14	 Code style-related Issues

The following are coding style issues that Paladin spotted throughout the contracts
of the VESQ protocol. Paladin has aggregated the ones that occurred frequently
into this section to shorten the report.

Page of 76 86 Code style-related Issues Paladin Blockchain Security

2.14.1	 Issues & Recommendations

Issue #48 Inconsistency: Unused mint function emits an event from
address(this) while the mint logic during initialization emits an event
from the zero address

Severity

Description The _mint function is inconsistent with the way tokens are actually
minted in that it sets the token contract itself as the transfer origin.
This would likely mislead explorers and third-party tools into
thinking that tokens were taken out of the token contract itself.

Functions 
- VSQERC20: _mint

- sVSQERC20: _mint

This issue has been marked as informational as _mint is presently
unused, making this a purely informational concern.

Recommendation Consider making _mint consistent with the recommended practice
of using address zero as the origin for the mint transfer.

Resolution RESOLVED

INFORMATIONAL

Page of 77 86 Code style-related Issues Paladin Blockchain Security

Issue #49 Various functions can be made external

Severity

Description Functions that are not used within the contract but only externally
can be marked as such with the external keyword. Apart from being
a best practice when the function is not used within the contract,
this can lead to a lower gas usage in certain cases.

Functions

- VSQERC20: burn and burnFrom

- Staking: claim and index

- StakingDistributor: nextRewardFor

Recommendation Consider marking the above variables as external.

Resolution

INFORMATIONAL

RESOLVED

Page of 78 86 Code style-related Issues Paladin Blockchain Security

Issue #50 Lack of events for various functions

Severity

Description Functions that affect the status of sensitive variables should emit
events as notifications.

- sVSQERC20: setIndex

❗ The return value is furthermore unnecessary unless this is some
highly standard interface like ERC-20.

- wsVSQ: wrap and unwrap

- Staking: stake, claim, forfeit, toggleDepositLock, unstake,
rebase, giveLockBonus, returnLockBonus, setContract and
setWarmup

- BondDepository: initializeBondTerms, setBondTerms,
setAdjustment, setStaking and recoverLostToken

- StakingDistributor: distribute, adjust, addRecipient,
removeRecipient and setAdjustment

- StakingHelper: stake

- VSQZapIn: setApprovedTargets, toggleContractActive,
addPairAddress, removePairAddress, addReserveAddress and
removeReserveAddress

Recommendation Add events for the above functions. Consider removing the return
variable.

Resolution

INFORMATIONAL

RESOLVED

Page of 79 86 Code style-related Issues Paladin Blockchain Security

Issue #51 Typographical errors

Severity

Description Contracts

- sVSQERC20: Token comments mention ERC-777 which is not
relevant to sVSQ 

Line 537 (example)

// Present in ERC777

Throughout the ERC20 dependency of the tokens, references to
EIP-777 are made, this improved token standard is known to cause
many exploits as it allows for reentrancy on any transfer, it could
therefore scare less adept third-party reviewers into thinking this is
an erc-777 token while it in fact is not.

Line 629 furthermore contains a typographical error:

// Overrideen in ERC777

- Staking: setWarmup is an ambiguous function name and should
be renamed to setWarmupPeriod.

- BondDepository: unnecessary convert of treasury to address

Line 889

address(treasury)

- EthBondDepository 
Throughout the contract blocks are referred in the comments
even though VESQ deployment is using a timestamp approach.
IWETH9 is used as an interface name for Wrapped MATIC which
may be misleading for third-parties who might want to inspect
the contract.

- VSQZapIn: The contract still mentions Quickswap throughout the
comments.

Recommendation Consider fixing the above typographical errors.

Resolution RESOLVED

INFORMATIONAL

Page of 80 86 Code style-related Issues Paladin Blockchain Security

Issue #52 Unused variables/dependencies throughout the contracts

Severity

Description The contract includes unused variables. These unnecessarily
increase the contract source code size and gas consumption, also it
can make third-party reviewing more cumbersome.

Contracts

- VSQERC20: ERC20TOKEN_ERC1820_INTERFACE_ID and
unused dependency EnumerableSet

Line 606

bytes32 constant private ERC20TOKEN_ERC1820_INTERFACE_ID =

keccak256("ERC20Token");

The custom token dependency contains a constant variable
containing a hashed interface identifier. However, this variable is not
used throughout the contract.

There are furthermore many references to ERC-777 which could
mislead less adept code reviewers into believing this is an ERC-777
token. As ERC-777 tokens are traditionally associated with exploit
vulnerability, it is best to avoid such confusion.

- wsVSQ: Address and SafeERC20

Lines 749-750

using SafeERC20 for ERC20;

using Address for address;

- BondDepository: ERC20, ERC20Permit, IERC2612Permit and
Counters

- StakingDistributor: SafeERC20

- VSQZapIn: _getBalance

Recommendation Consider removing the above variables.

Resolution RESOLVED

INFORMATIONAL

Page of 81 86 Code style-related Issues Paladin Blockchain Security

Issue #53 Gas optimization: Contract uses hardcoded strings in SafeMath
functions

Severity

Location VSQERC20::Line 895-899 (example) 

uint256 decreasedAllowance_ =

 allowance(account_, msg.sender).sub(

 amount_,

 "ERC20: burn amount exceeds allowance"

);

Description The contract injects the error message into SafeMath. This is known
to cost extra gas, even on the happy path, as it causes memory
allocation.

Recommendation Consider checking the identity explicitly using a require statement
and then using non-safe math to do the subtractions and additions
instead. SafeMath has also created the trySub and tryAdd functions
in more recent versions to address this gas usage concern.

Resolution

INFORMATIONAL

The example location has been resolved but the gas inefficiency
remains present in multiple parts of the codebase. We want to note
that this is no issue for users at all as it is only a gas optimization
issue and the client will launch on an extremely cheap network from
a gas-cost perspective.

PARTIALLY RESOLVED

Page of 82 86 Code style-related Issues Paladin Blockchain Security

Issue #54 Uncast addresses make the code more verbose than it needs to be

Severity

Location StakingHelper::Line 95 

IERC20(VSQ).transferFrom(msg.sender, address(this),

_amount);

Description Throughout the contract, addresses are stored using the address
type instead of the interface type. This requires the code to cast
them to the correct interface every time these addresses are used
and makes them prone to typing errors. It should be noted that
address typing is purely syntactic and does not have any runtime
benefits (either through performance security).

Recommendation Consider casting all addresses to the correct types within the
storage portions of the contract. This is done in a large number of
locations so the client will have to simply go over all contracts to do
this.

Sometimes an address has multiple types (eg. IsVSQ + IERC20), in
this case we recommend making an aggregate interface that inherits
both of them or making IsVSQ inherit IERC20 in this example.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 83 86 Code style-related Issues Paladin Blockchain Security

Issue #55 Ambiguous errors

Severity

Location (Examples)

sVSQERC20::Line 1011

require(msg.sender == stakingContract);

sVSQERC20::Line 1070 

require(INDEX == 0);

Description The contract contains locations of code which do not revert with an
error message, instead they revert ambiguously leaving users to
potentially wonder what happened with their transaction. It makes
writing coverage tests furthermore difficult as these cannot
explicitly check for the reversion method.

Within the sVSQ token, often transfers also revert with ambiguous
errors if the user does not have enough allowance or tokens. This is
likely the most severe location of this issue as these events might
occur frequently.

Recommendation Consider adding explicit reversion messages to the aforementioned
locations and any other reversion locations which could cause a
worse user experience.

Resolution

INFORMATIONAL

Error messages have been added in many locations of the code
except the following.

- BondDepository/EthBondDepository missed recoverTokenLost,
constructor, setStacking errors

- Staking: constructor

- StakingDistributor: addRecipient, constructor

- StakingHelper: constructor

- StakingWarmup: retrieve

- StandardBondingCalculator: constructor

- Treasury: constructor, queue

- wsVSQ: constructor

PARTIALLY RESOLVED

Page of 84 86 Code style-related Issues Paladin Blockchain Security

Issue #56 Gas optimization: storage variables are frequently unnecessarily
reread

Severity

Location (Examples)

sVSQERC20::Line 1191-1192 

_allowedValue[msg.sender][spender] =

_allowedValue[msg.sender][spender].add(addedValue);

emit Approval(msg.sender, spender,

_allowedValue[msg.sender][spender]);

Description The contract often unnecessarily re-reads variables from storage,
while they could be derived from variables stored in memory. This
causes gas to be wasted unnecessarily (about 200 gas per read).

This issue is aggregated into a single issue as we wish to not
unnecessarily clutter the report with a high issue count given that
the client is unlikely to want to make many changes to the codebase
for micro-optimization. Upon request by VESQ, our internal
documentation with all locations of code that can be optimized can
be provided either in the report or privately.

Recommendation Within derivative protocols, one can consider using try-catch for
permit and validating the approval afterwards.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 85 86 Code style-related Issues Paladin Blockchain Security

Page of 86 86 Code style-related Issues Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 Global Issues
	1.3.2 VSQERC20
	1.3.3 sVSQERC20
	1.3.4 wsVSQ
	1.3.5 BondDepository
	1.3.6 EthBondDepository
	1.3.7 Staking
	1.3.8 StakingDistributor
	1.3.9 StakingHelper
	1.3.10 StakingWarmup
	1.3.11 StandardBondingCalculator
	1.3.12 Treasury
	1.3.13 VSQZapIn
	1.3.14 Code style-related Issues

	2 Findings
	2.1 Global Issues
	2.1.1 Issues & Recommendations

	2.2 VSQERC20
	2.2.1 Token Overview
	2.2.2 Privileged Roles
	2.2.3 Issues & Recommendations

	2.3 sVSQERC20
	2.3.1 Token Overview
	2.3.2 Privileged Roles
	2.3.3 Issues & Recommendations

	2.4 wsVSQ
	2.4.1 Token Overview
	2.4.2 Issues & Recommendations

	2.5 BondDepository
	2.5.1 Privileged Roles
	2.5.2 Issues & Recommendations

	2.6 EthBondDepository
	2.6.1 Privileged Roles
	2.6.2 Issues & Recommendations

	2.7 Staking
	2.7.1 Privileged Roles
	2.7.2 Issues & Recommendations

	2.8 StakingDistributor
	2.8.1 Privileged Roles
	2.8.2 Issues & Recommendations

	2.9 StakingHelper
	2.9.1 Issues & Recommendations

	2.10 StakingWarmup
	2.10.1 Privileged Roles
	2.10.2 Issues & Recommendations

	2.11 StandardBondingCalculator
	2.11.1 Issues & Recommendations

	2.12 Treasury
	2.12.1 Privileged Roles
	2.12.2 Issues & Recommendations

	2.13 VSQZapIn
	2.13.1 Privileged Roles
	2.13.2 Issues & Recommendations

	2.14 Code style-related Issues
	2.14.1 Issues & Recommendations

