
Page  of 1 17 Paladin Blockchain Security

Smart Contract 
Security Assessment

For Vesq (Presale)
18 November 2021

paladinsec.co info@paladinsec.co

Final Report



Table of Contents


Table of Contents	 
2

Disclaimer	 
3

1  Overview	 
4

1.1  Summary	 
4

1.2  Contracts Assessed	 
4

1.3  Findings Summary	 
5

1.3.1 VSQPresale	 
6

1.3.2 VSQTokenRedeem	 
6

1.3.3 Locker	 
6

2  Findings	 
7

2.1  VSQPresale	 
7

2.1.1 Issues & Recommendations	 
8

2.2  VSQTokenRedeem	 
12

2.2.1 Issues & Recommendations	 
13

2.3  Locker	 
14

2.3.1 Issues & Recommendations	 15

Page  of 2 17 Paladin Blockchain Security



Disclaimer

Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity 
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in 
the codes that were provided for the scope of this audit. This audit report does not constitute 
agreement, acceptance or advocation for the Project that was audited, and users relying on this 
audit report should not consider this as having any merit for financial advice in any shape, form or 
nature. The contracts audited do not account for any economic developments that may be pursued 
by the Project in question, and that the veracity of the findings thus presented in this report relate 
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who 
make no guarantees nor assurance that the contracts are completely free of exploits, bugs, 
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor 
transmitted to any persons or parties on any objective, goal or justification without due written 
assent, acquiescence or approval by Paladin.


All information provided in this report does not constitute financial or investment advice, nor 
should it be used to signal that any persons reading this report should invest their funds without 
sufficient individual due diligence regardless of the findings presented in this report. Information is 
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the 
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to 
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or 
actions with regards to the information provided in this audit report. 


Cryptocurrencies and any technologies by extension directly or indirectly related to 
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and 
safeguards may yet be insufficient, and users should exercise considerable caution when 
participating in any shape or form in this nascent industry.


The audit report has made all reasonable attempts to provide clear and articulate 
recommendations to the Project team with respect to the rectification, amendment and/or revision 
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole 
responsibility of the Project team to sufficiently test and perform checks, ensuring that the 
contracts are functioning as intended, specifically that the functions therein contained within said 
contracts have the desired intended effects, functionalities and outcomes of the Project team. 

Page  of 3 17 Paladin Blockchain Security



1	 	 Overview

This report has been prepared for Vesq’s presale contracts on the Polygon network. 
Paladin provides a user-centred examination of the smart contracts to look for 
vulnerabilities, logic errors or other issues from both an internal and external 
perspective.


1.1	 	 Summary


1.2	 	 Contracts Assessed


Project Name Vesq (Presale)

URL https://www.vesq.io/

Platform Polygon

Language Solidity

Name Contract
Live Code 
Match

VSQPresale VSQPresale.sol

VSQTokenRedeem VSQTokenRedeem.sol

Source
https://github.com/VESQHQ/vesq-contracts/tree/
7f09297c85060aa8b16e4cbf78bee4a0c33aa091

Page  of 4 17 Paladin Blockchain Security

https://github.com/VESQHQ/vesq-contracts/tree/7f09297c85060aa8b16e4cbf78bee4a0c33aa091
https://www.vesq.io/


1.3	 	 Findings Summary


Classification of Issues

 

Severity Found Resolved
Partially 
Resolved

Acknowledged 
(no change made)

0 - - -

1 1 - -

2 2 - -

8 8 - -

Total 11 11 - -

 Informational

 High

 Low

 Medium

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead 
towards loss of funds, control, or impairment of the contract and its 
functions. Issues under this classification are recommended to be fixed with 
utmost urgency.

Bugs or issues with that may be subject to exploit, though their impact is 
somewhat limited. Issues under this classification are recommended to be 
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the 
project or its users. Issues under this classification are recommended to be 
fixed nonetheless. 

Consistency, syntax or style best practices. Generally pose a negligible level 
of risk, if any.

 Medium

 High

 Informational

 Low

Page  of 5 17 Paladin Blockchain Security



1.3.1	 VSQPresale


1.3.2	 VSQTokenRedeem


1.3.3	 Locker


ID Severity Summary Status

01 Current per wallet limit scheme incentivizes users to wait until the 
very end of the presale

02 Lack of constructor validation

03 Contract only works for specific token configurations

04 Unnecessary precision multiplier

05 sendUnclaimedsToTreasuryAddress does not adhere to checks- 
effects-interactions 

06 Erroneous usage of assert

07 Error message in sendUnclaimedsToTreasuryAddress states that 
it is going to burn the tokens

RESOLVED

INFO

INFO

INFO

RESOLVED

LOW

RESOLVED

RESOLVED

RESOLVEDINFO

INFO

RESOLVED

INFO

RESOLVED

ID Severity Summary Status

08 1e9 multiplier is inconsistent with VSQPresale

09 Lack of constructor validation RESOLVED

MEDIUM

INFO

RESOLVED

ID Severity Summary Status

10 Lack of constructor validation

11 Odd contract layoutINFO RESOLVED

LOW RESOLVED

Page  of 6 17 Paladin Blockchain Security



2	 	 Findings


2.1	 	 VSQPresale


The VSQPresale contract allows whitelisted users to purchase VSQ tokens with 
FRAX tokens. The initial price is set at 0.04 VSQ per FRAX supplied and can be 
changed between 0.004 VSQ and 0.4 VSQ until 4 hours before the start of the 
presale. After this time, the price becomes fixed within the contract and its value is 

readable in the salePriceE35 public variable, which needs to be divided by 10^35 

to retrieve the conversion rate (this variable is therefore presently 4*10^33). 


The presale size is fixed at 50,000 VSQ tokens and will take four days. Whitelisted 
users can only make a single purchase and can purchase up to the remaining 
presale size divided by the amount of remaining whitelisted users that have not 
purchased yet. If the remaining presale size is 1000 VSQ and 10 whitelisted 
members remain, this would set the limit at 100 VSQ per user.


Any unsold VSQ tokens are sent to the treasury at the end of the presale.


Page  of 7 17 VSQPresale Paladin Blockchain Security



2.1.1	 Issues & Recommendations


Issue #01 Current per wallet limit scheme incentivizes users to wait until the 
very end of the presale

Severity

Location Line 62 

uint256 maxVSQPurchase = VSQRemaining / remainingBuyers;

Description Currently, the maximum amount of VSQ a single wallet can 
purchase is based on the amount of remaining VSQ divided by the 
amount of remaining buyers.


As users can only ever purchase at most up to this amount, this 
value is non-decreasing with purchases. This means that over time, 
the maxVSQPurchase can only go up which might incentivize 
whitelisted users to wait until the very last second of the presale to 
have the maximum possible maxVSQPurchase value.

Recommendation Consider whether this is desired behavior, if not, consider 
redesigning the behavior to allow for less time-critical incentives.

Resolution 

The client has indicated this is desired behavior. Users can therefore 
wait for potential gain at the risk of being too late.

RESOLVED

LOW SEVERITY

Page  of 8 17 VSQPresale Paladin Blockchain Security



Issue #02 Lack of constructor validation

Severity

Description Currently there is no validation that the parameters with which the 
contract has been created make sense, this could lead to accidental 
mistakes if the deployment isn’t done carefully.

Recommendation Consider validating that startBlock is in the future and that the 
addresses are non-zero.

Resolution 

The recommended validation has been added.

RESOLVED

INFORMATIONAL

Issue #03 Contract only works for specific token configurations

Severity

Description Currently the VSQPresale requires the VSQ token to be 9 decimals, 
the FRAX token to be 18 decimals, and neither of the tokens to 
require SafeERC20.


This issue is marked as informational since these requirements do in 
fact match the expected deployment of the client. We have still 
included this as an issue in case the client wishes to deploy to a new 
network for example.


It should finally be noted that a check within the purchase function 
is out of bounds under the current configuration:


require(fraxToSpend <= 1.25 * 1e25, "too much frax to 

spend");

Recommendation Consider using SafeERC20, consider calling .decimals() on the 
tokens to generalize the logic to any token decimals.

Resolution 

The client has generalized the contract to work for any decimals. 
The out of bounds check has also been removed. SafeERC20 is now 
used consistently.

RESOLVED

INFORMATIONAL

Page  of 9 17 VSQPresale Paladin Blockchain Security



Issue #04 Unnecessary precision multiplier

Severity

Location Line 91 

fraxSpent = ((VSQPurchaseAmount * fraxToSpend * 1e24) / 

originalVSQAmount) / 1e24;

Description Line 91 multiplies and divides by 1e24. However, since these two 
operations are done within the same line of code, they cancel each 
other out. Simply adhering to multiplication before division would 
result in the exact same level of precision.

Recommendation Consider validating that removing this precision multiplier results in 
no precision loss and then consider removing it.

Resolution

INFORMATIONAL

RESOLVED

Issue #05 sendUnclaimedsToTreasuryAddress does not adhere to checks-
effects-interactions

Severity

Description Currently the governance function 
sendUnclaimedsToTreasuryAddress does not adhere to checks-
effects-interactions.


This issue has been marked as informational since Paladin could not 
find severe consequences of this.

Recommendation Consider moving the following effect to the top of the function, right 
under the checks (require calls).


hasRetrievedUnsoldPresale = true;

Resolution

INFORMATIONAL

RESOLVED

Page  of 10 17 VSQPresale Paladin Blockchain Security



Issue #06 Erroneous usage of assert

Severity

Location Line 82 

assert(VSQPurchaseAmount <= 

IERC20(VSQAddress).balanceOf(address(this)));

Description Solidity contracts should only use assert for checks that can never 
fail, but this is not the case for the check on line 82 as there is no 
guarantee that there is enough VSQ in the contract to cover this 
amount.

Recommendation Consider using require for the check on line 82.

Resolution RESOLVED

INFORMATIONAL

Issue #07 Error message in sendUnclaimedsToTreasuryAddress states that it 
is going to burn the tokens

Severity

Location Line 107 

require(!hasRetrievedUnsoldPresale, "can only burn unsold 

presale once!");

Description The sendUnclaimedsToTreasuryAddress function returns an error 
that the tokens would be burned. However, the unsold tokens are in 
fact sent to the treasury.

Recommendation Consider correcting the error message.

Resolution RESOLVED

INFORMATIONAL

Page  of 11 17 VSQPresale Paladin Blockchain Security



2.2		 VSQTokenRedeem


The VSQTokenRedeem allows redeeming the Presale VSQ token for a VSQ token 
variant.


Page  of 12 17 VSQTokenRedeem Paladin Blockchain Security



2.2.1	 Issues & Recommendations


Issue #08 1e9 multiplier is inconsistent with VSQPresale

Severity

Location Lines 35-36 

IERC20(preVSQ).transferFrom(msg.sender, BURN_ADDRESS, 

VSQSwapAmount); 

IERC20(VSQAddress).transfer(msg.sender, VSQSwapAmount * 

1e9);

Description The swap grants 10^9 times more VSQ tokens than preVSQ that 
needs to be sent. Since the VSQPresale contract already seems to 
be dealing with a 9 decimal token, we do not presently understand 
why this multiplication is being made. If this is by error, this would 
result in the first swapper likely withdrawing all VSQ tokens.

Recommendation Consider explaining why this 1e9 multiplication is done. If it is there 
by error, consider removing it.

Resolution

MEDIUM SEVERITY



The code has been generalized for any decimal count. This issue 
was never present within the current deployment as the client their 
presale VSQ token, which was outside of the audit scope, 
apparently had 0 decimals.

RESOLVED

Issue #09 Lack of constructor validation

Severity

Description Although there is constructor validation already, it is not complete.

Recommendation Consider requiring that _VSQAddress is nonzero.

Resolution

INFORMATIONAL

RESOLVED

Page  of 13 17 VSQTokenRedeem Paladin Blockchain Security



2.3		 Locker


The Locker contract is a simple ERC20 token locker which allows the owner to 
define an unlock block number. Any tokens which have been sent to the Locker only 
become withdrawable once this block number, publicly inspectable as 
UNLOCK_BLOCKNUMBER, has been reached.


Page  of 14 17 Locker Paladin Blockchain Security



2.3.1	 Issues & Recommendations


Issue #10 Lack of constructor validation

Severity

Description Currently the constructor is not validated – this might cause 
accidental error or cause users to not notice the fact that the 
UNLOCK_BLOCKNUMBER has been set to a value in the past.

Recommendation Consider requiring the UNLOCK_BLOCKNUMBER to be at least a 
reasonable amount in the future within the constructor. 
Furthermore, if infinite locks are not a requirement, consider adding 
a maximum to avoid user error.

Resolution

LOW SEVERITY

RESOLVED

Page  of 15 17 Locker Paladin Blockchain Security



Issue #11 Odd contract layout

Severity

Description Although the contract is perfect from a code design perspective, the 
contract is formatted strangely. The contract definition has been 
placed all the way at the top where the license identifier would go. 
Furthermore, NatSpec has been used to document the constructor 
but was not used to document claimToken. If ever a documentation 
where to be generated using tools that can interpret NatSpec, it 
might be valuable to be consistent with using it.

Recommendation Consider using NatSpec consistently throughout the contract and 
consider moving the contract definition comment to right above line 
7. Line 1 should be reserved for the license identifier.


Consider also including the Solidity pragma version.


The constructor visibility (public) is unnecessary if the contract were 
to be used on Solidity 0.8.0 or higher.


Finally the constructor has a wrongly copied comment which needs 
to be removed:


Constructs the PlushToken contract.

Resolution RESOLVED

INFORMATIONAL

Page  of 16 17 Locker Paladin Blockchain Security



Page  of 17 17 Locker Paladin Blockchain Security


	Table of Contents
	Disclaimer
	1  Overview
	1.1  Summary
	1.2  Contracts Assessed
	1.3  Findings Summary
	1.3.1 VSQPresale
	1.3.2 VSQTokenRedeem
	1.3.3 Locker


	2  Findings
	2.1  VSQPresale
	2.1.1 Issues & Recommendations

	2.2  VSQTokenRedeem
	2.2.1 Issues & Recommendations

	2.3  Locker
	2.3.1 Issues & Recommendations



